
XCFun
Release 2.1.1

Ulf Ekström and contributors

Nov 12, 2020

CONTENTS

1 Building XCFun 3
1.1 Dependencies . 3
1.2 Configuring, building, testing . 4
1.3 Compilation options . 4
1.4 Building the documentation . 5
1.5 Bumping versions . 5

2 Using XCFun 7
2.1 Installing using Spack . 7
2.2 Installing using Conda . 7
2.3 Integration with your build system . 8
2.4 Writing an interface . 9

3 Migrating to the new application programmers’ interface 11
3.1 C/C++ host programs . 11
3.2 Fortran host programs . 12

4 XCFun’s application programming interface 15
4.1 Types and type definitions . 15
4.2 Functions . 15
4.3 Enumerations . 20
4.4 Preprocessor definitions and global variables . 23

5 Exchange-correlation functionals 25
5.1 Implementing a new XC functional . 26
5.2 Introducing new variables . 26

6 Change Log 27
6.1 Version 2.1.1 - 2020-11-12 . 27
6.2 Version 2.1.0 - 2020-09-18 . 27
6.3 Version 2.0.2 - 2020-07-15 . 27
6.4 Version 2.0.1 - 2020-05-06 . 28
6.5 Version 2.0.0 - 2020-04-14 . 28
6.6 Version 2.0.0a7 - 2020-04-10 . 28
6.7 Version 2.0.0a6 - 2020-02-23 . 28
6.8 Version 2.0.0a5 - 2020-02-20 . 28
6.9 Version 2.0.0a4 - 2020-02-02 . 29
6.10 Version 2.0.0a3 - 2020-01-31 . 29
6.11 Version 2.0.0a2 - 2020-01-21 . 30
6.12 Version 2.0.0a1 - 2019-12-15 . 30

i

7 Indices and tables 31

Index 33

ii

XCFun, Release 2.1.1

XCFun is a library of exchange-correlation (XC) functionals to be used in density-functional theory (DFT) codes.
XCFun follows a unique implementation strategy which enables the computation of derivatives of the XC functional
kernel up to arbitrary order. It does so by relying on forward-mode automatic differentiation.

Given a new XC functional kernel, its implementation with all its derivatives only requires to write code for the
undifferentiated kernel. This implementation strategy is very powerful and allows:

1. Faster implementation of new functionals: you write the kernel, the compiler does the rest.

2. Introduction of new variables, for example current densities, in the parametrization of new or existing XC
kernels.

3. Testing for numerical stability of XC kernels, using arbitrary precision arithmetic libraries.

Contents:

CONTENTS 1

XCFun, Release 2.1.1

2 CONTENTS

CHAPTER

ONE

BUILDING XCFUN

1.1 Dependencies

• A C++ compiler compliant with the C++11 standard. See here for a list of compatible compilers.

• The CMake build system generator. Version 3.11 or later is required. To install a recent version of CMake
locally:

$ CMAKE_VERSION=3.14.7
$ target_path=$HOME/Deps/cmake/$CMAKE_VERSION
$ cmake_url="https://cmake.org/files/v${CMAKE_VERSION%.*}/cmake-${CMAKE_VERSION}-
→˓Linux-x86_64.tar.gz"
$ mkdir -p "$target_path"
$ curl -Ls "$cmake_url" | tar -xz -C "$target_path" --strip-components=1
$ export PATH=$HOME/Deps/cmake/$CMAKE_VERSION/bin${PATH:+:$PATH}

1.1.1 Optional dependencies

To compile the standalone examples:

• A Fortran compiler with complete iso_c_binding support.

• A C compiler compliant with the C99 standard.

To compile the Python bindings:

• Python 3.6+ and its development libraries and headers.

• pybind11. This will be automatically downloaded if not available.

To compile the documentation:

• Doxygen

• Sphinx

• The Breathe Sphinx extension.

• The recommonmark Sphinx extension.

3

https://en.cppreference.com/w/cpp/compiler_support#cpp11
https://cmake.org
https://pybind11.readthedocs.io
http://doxygen.nl/
https://www.sphinx-doc.org/en/master/index.html
https://breathe.readthedocs.io

XCFun, Release 2.1.1

1.2 Configuring, building, testing

1. Clone the repository from GitHub or download a tarball with the sources.

2. Configure:

$ cmake -H. -Bbuild -DCMAKE_INSTALL_PREFIX=<install-prefix>

We also provide a Python script as front-end to CMake, see Compilation options.

3. Build:

$ cd build
$ make

4. Test:

$ ctest

5. Install:

$ make install

Congratulations, you are all set to use XCFun! Read on for details on Using XCFun.

1.3 Compilation options

A Python script called setup is made available as a front-end to CMake. The basic configuration command:

$ cmake -H. -Bbuild -DCMAKE_INSTALL_PREFIX=<install-prefix>

translates to the following invocation of the setup script:

$ python setup --prefix=<install-prefix>

The script’s options mirror exactly the options you can set by directly using CMake.

• --cxx / CMAKE_CXX_COMPILER. The C++ compiler to use to compile the library.

• --type / CMAKE_BUILD_TYPE. Any of the build types recognized by CMake, i.e. debug, release, and so
forth.

• <build-dir> / -B<build-dir>. The location of the build folder.

• --xcmaxorder / XCFUN_MAX_ORDER. Maximum derivative order, defaults to 6.

• --pybindings / XCFUN_PYTHON_INTERFACE. Enable compilation of Python bindings, defaults to OFF.

• --static / BUILD_SHARED_LIBS. Compile only the static library, defaults to OFF, building the shared
library only.

• ENABLE_TESTALL. Whether to compile unit tests. ON by default. To toggle it OFF when using the setup
script use --cmake-options="-DENABLE_TESTALL=OFF".

4 Chapter 1. Building XCFun

XCFun, Release 2.1.1

1.4 Building the documentation

To build the documentation:

$ cd docs
$ make html

or:

$ sphinx-build docs _build -t html

1.5 Bumping versions

To bump a version you should edit the cmake/custom/xcfun.cmake, src/version_info.hpp, and
docs/conf.py files.

1.4. Building the documentation 5

XCFun, Release 2.1.1

6 Chapter 1. Building XCFun

CHAPTER

TWO

USING XCFUN

To use the library, you will need to:

• Link your executable to it. Either using the static, libxcfun.a or shared, libxcfun.so, version.

• For C/C++ hosts, include the header file xcfun.h where appropriate:

#include "XCFun/xcfun.h"

• For Fortran hosts, compile the xcfun.f90 source file together with your sources. This will allow using the
Fortran/C interoperability layer with:

use xcfun

2.1 Installing using Spack

XCFun can be installed in a Spack environment with:

spack env create myenv
spack env activate myenv
spack install xcfun

2.2 Installing using Conda

XCFun can be installed in a Conda environment with:

conda create -n myenv xcfun -c conda-forge
conda activate myenv

The package is built with derivatives up to 8th order and includes the Python bindings.

7

https://www.spack.io/
https://docs.conda.io/

XCFun, Release 2.1.1

2.3 Integration with your build system

The set up of the build system for you code will change the details on how to achieve the points above. In the
following, we provide minimalistic instructions for codes that use either CMake as their build system generator or
plain Makefile.

2.3.1 CMake as build system

Note: You can find complete, standalone examples for C, C++, and Fortran in the examples folder.

If you use CMake as your build system, adding the command:

find_package(XCFun CONFIG)

in your CMakeLists.txt will let CMake search for an XCFun installation. CMake will honor the hint variable:

-DXCFun_DIR=<install-prefix>/share/cmake/XCFun

and set up the target XCFun::xcfun for you to link your target against:

target_link_libraries(<your-target-name>
PRIVATE
XCFun::xcfun

)

For Fortran hosts the xcfun.f90 will have to be compiled too. The following addition suffices:

target_sources(<your-target-name>
PRIVATE
${XCFun_Fortran_SOURCES}

)

2.3.2 Other build systems

You will need to set:

• The linker path:

-L<install-prefix>/lib64 -lxcfun

note that on some systems it might be lib rather than lib64.

• For C/C++ codes, the include path:

-I<install-prefix>/include

• For Fortran codes, the location of the Fortran/C interoperability source file xcfun.f90:

<install-prefix>/include/XCFun/xcfun.f90

8 Chapter 2. Using XCFun

https://cmake.org/

XCFun, Release 2.1.1

2.4 Writing an interface

Note: Please, read the full XCFun’s application programming interface documentation for a complete overview.

The library exposes an opaque type, xcfun_t, through which you can obtain the exchange-correlation functional
derivatives to the desired order. To do so:

1. Create one xcfun_t object. There should be only one such object per thread and per XC functional. In C/C++
this is achieved with:

xcfun_t * fun = xcfun_new();

whereas in Fortran:

use, intrinsic :: iso_c_binding

type(c_ptr) :: fun

fun = xcfun_new()

2. The xcfun_t object is now a blank slate. You will need to set the exchange-correlation admixture, i.e. which
functional and which amount to use for exchange and correlation. This is achieved with calls to xcfun_set():

int ierr = 0;
ierr = xcfun_set(fun, "blyp", 0.9);
ierr = xcfun_set(fun, "pbec", 0.1);

We have now set up the BLYP GGA functional.

3. Next, you will have to set up the evaluation strategy, i.e. which variables will be passed in as input to the
functional, which outputs are expected, and the order of the derivatives to return upon evaluation. This can be
done by calling xcfun_eval_setup():

ierr = xcfun_eval_setup(fun, XC_A_B_AX_AY_AX_BX_BY_BZ, XC_PARTIAL_DERIVATIVES, 1);

The convenience function xcfun_user_eval_setup() is also available. With this set up, we will obtain
functional derivatives of the BLYP functional up to first order, using 𝛼 and 𝛽 variables and partial derivatives.

4. We are now ready to run the evaluation and for this you will have to allocate a properly sized chunk of memory.
The function xcfun_output_length() will return how large such a scratch array has to be:

int nout = xcfun_output_length(fun);

double * output = malloc(sizeof(double) * nout);

5. Finally, we proceed to the evaluation. We call xcfun_eval() with an array of density values:

xcfun_eval(fun, d_elements, output);

6. The important last step is to clean up the used heap memory. xcfun_delete() is the function to call:

free(output);
xcfun_delete(fun);

2.4. Writing an interface 9

XCFun, Release 2.1.1

2.4.1 Input, output and units

The library uses atomic units for all input and output variables.

The XC energy density and derivatives can be evaluated using local spin-up (𝛼) and spin-down (𝛽) quantities. In the
most general case these are:

• 𝑛𝛼 The spin-up electron number density.

• 𝑛𝛽 The spin-down density.

• 𝜎𝛼𝛼 = ∇𝑛𝛼.∇𝑛𝛼 The square magnitude of the spin-up density gradient.

• 𝜎𝛼𝛽 = ∇𝑛𝛼.∇𝑛𝛽 The dot product between the spin-up and spin-down gradient vectors.

• 𝜎𝛽𝛽 = ∇𝑛𝛽 .∇𝑛𝛽 The square magnitude of the spin-down density gradient.

• 𝜏𝛼 = 1
2

∑︀
𝑖 |𝜓𝑖𝛼|2 The spin-up Kohn-Sham kinetic energy density.

• 𝜏𝛽 The spin-down Kohn-Sham kinetic energy density.

Alternatively you can use total density (𝑛 = 𝑛𝛼 + 𝑛𝛽) and spin density (𝑠 = 𝑛𝛼 − 𝑛𝛽) variables. These also have
corresponding gradient and kinetic energy components. See xcfun_set() below for more information.

The output is given in graded reverse lexicographical order. For example a spin-polarized second order GGA func-
tional will give 21 output elements, starting with the XC energy density. Symbolically we may write this as a list
starting with the energy E, followed by five gradient elements 𝐸𝛼𝐸𝛽𝐸𝜎𝛼𝛼

𝐸𝜎𝛼𝛽
𝐸𝜎𝛽𝛽

and 15 second derivatives
𝐸𝛼𝛼𝐸𝛼𝛽𝐸𝛼𝜎𝛼𝛼

...𝐸𝛽𝛽𝐸𝛽𝜎𝛼𝛼
...𝐸𝜎𝛽𝛽𝜎𝛽𝛽

.

10 Chapter 2. Using XCFun

https://en.wikipedia.org/wiki/Monomial_order#Graded_reverse_lexicographic_order

CHAPTER

THREE

MIGRATING TO THE NEW APPLICATION PROGRAMMERS’
INTERFACE

This is a short guide to migrating to the new application programmers’ interface (API) and build system for XCFun.
We assume that you have successfully built and tested XCFun and installed it to <install-prefix>. The layout
of the install tree will be as follows:

<install-prefix>/
include

XCFun
config.hpp
densvars.hpp
functional.hpp
functionals
specmath.hpp
XCFunctional.hpp
XCFunExport.h
xcfun.f90
xcfun.h
xcint.hpp

lib
python

xcfun
lib64

libxcfun.a
libxcfun.so -> libxcfun.so.2
libxcfun.so.2

share
cmake

XCFun

3.1 C/C++ host programs

Types and function signatures are in the header file xcfun.h.

In your source code, apply the following changes:

• Remove any of the calls to the functions that have been removed from the API. Open an issue if these functions
are essential to your workflow and you would like them to be reinstated.

• Replace xc_functional with xcfun_t *.

• Replace xc_new_functional with xcfun_new.

• Replace xc_enumerate_parameters with xcfun_enumerate_parameters.

11

XCFun, Release 2.1.1

• Replace xc_enumerate_aliases with xcfun_enumerate_aliases.

• Replace xc_set with xcfun_set.

• Replace xc_get with xcfun_get.

• Replace xc_describe_short with xcfun_describe_short.

• Replace xc_describe_long with xcfun_describe_long.

• Replace xc_is_gga with xcfun_is_gga.

• Replace xc_is_metagga with xcfun_is_metagga.

• Replace xc_eval_setup with xcfun_eval_setup.

• Replace xc_user_eval_setup with xcfun_user_eval_setup.

• Replace xc_input_length with xcfun_input_length.

• Replace xc_output_length with xcfun_output_length.

• Replace xc_eval with xcfun_eval.

• Replace xc_eval_vec with xcfun_eval_vec.

3.2 Fortran host programs

The Fortran/C interoperability layer for types and function signatures is in the source file xcfun.f90.

In your source code, apply the following changes:

• Use the intrinsic iso_c_binding module: use, intrinsic :: iso_c_binding.

• Remove any of the calls to the functions that have been removed from the API. Open an issue if these functions
are essential to your workflow and you would like them to be reinstated.

• You should call the intrinsic trim on functions returning strings: xcfun_version, xcfun_splash,
xcfun_authors, xcfun_enumerate_paramters, xcfun_enumerate_aliases,
xcfun_describe_short, xcfun_describe_long.

• Replace the type for the xc_functional object (now xcfun_t *) from integer to type(c_ptr).

• Replace xc_new_functional with xcfun_new.

• Replace xc_enumerate_parameters with xcfun_enumerate_parameters.

• Replace xc_enumerate_aliases with xcfun_enumerate_aliases.

• Replace xc_set with xcfun_set.

• Replace xc_get with xcfun_get.

• Replace xc_describe_short with xcfun_describe_short.

• Replace xc_describe_long with xcfun_describe_long.

• Replace xc_is_gga with xcfun_is_gga.

• Replace xc_is_metagga with xcfun_is_metagga.

• Replace xc_eval_setup with xcfun_eval_setup.

• Replace xc_user_eval_setup with xcfun_user_eval_setup.

• Replace xc_input_length with xcfun_input_length.

12 Chapter 3. Migrating to the new application programmers’ interface

XCFun, Release 2.1.1

• Replace xc_output_length with xcfun_output_length.

• Replace xc_eval with xcfun_eval.

• Replace xc_eval_vec with xcfun_eval_vec.

3.2. Fortran host programs 13

XCFun, Release 2.1.1

14 Chapter 3. Migrating to the new application programmers’ interface

CHAPTER

FOUR

XCFUN’S APPLICATION PROGRAMMING INTERFACE

The library is written in C++, but can also be directly used in a C or Fortran project through its application program-
ming interface. The C interface is exposed described in the api/xcfun.h, while the Fortran interface is described in
the module file api/xcfun.f90. This documentation describes the C API. The Fortran API is written as a wrapper
to the C API and has the same behavior.

4.1 Types and type definitions

struct XCFunctional
Exchange-correlation functional.

typedef struct xcfun_s xcfun_t
Opaque handle to a XCFunctional object.

Note This type definition is a workaround to have the opaque xcfun_t struct available to C.

4.2 Functions

const char *xcfun_version()
The version of XCFun in use.

Return the version of XCFun

const char *xcfun_splash()
The XCFun splash screen.

Return a multi-line string describing the library. This functions shows the code attribution and literature citation.
It should be called when initializing XCFun in client code, so that your users find the right citation for the library.

Return A char array with the XCFun splash screen.

const char *xcfun_authors()
The XCFun splash screen.

Return A char array with the current list of XCFun authors.

int xcfun_test()
Test XCFun.

Run all internal tests and return the number of failed tests.

Return the number of failed tests.

15

XCFun, Release 2.1.1

bool xcfun_is_compatible_library()
Whether the library is compatible with the header file Checks that the compiled library and header file version
match. Host should abort when that is not the case.

Warning This function should be called before instantiating any XCFunctional object.

xcfun_vars xcfun_which_vars(const unsigned int func_type, const unsigned int dens_type, const
unsigned int laplacian, const unsigned int kinetic, const unsigned int
current, const unsigned int explicit_derivatives)

Obtain correct value of xcfun_vars enum.

This routine encodes the different options bitwise. Each legitimate combination is then converted to the corre-
sponding enum value.

Return XC functional variables to use

Parameters

• [in] func_type: LDA (0), GGA (1), metaGGA (2), taylor (3)

• [in] dens_type: Alpha (A,0), Rho (N,1), Alpha&Beta (A_B,2), Rho&Spin (N_S,3)

• [in] laplacian: (0 not required / 1 required)

• [in] kinetic: (0 not required / 1 required)

• [in] current: (0 not required / 1 required)

• [in] explicit_derivatives: (0 not required / 1 required)

7 6 5 4 3 2 1 0
0 0 LDA
0 1 GGA
1 0 metaGGA
1 1 Taylor

0 0 𝜌𝛼
0 1 𝜌
1 0 𝜌𝛼 and 𝜌𝛽
1 1 𝜌 and 𝑠

0 no laplacian
1 laplacian required

0 no kinetic energy density
1 kinetic energy density required

0 no current density required
1 current density required

0 𝛾-type partial derivatives
1 explicit partial derivatives

xcfun_mode xcfun_which_mode(const unsigned int mode_type)
Obtain correct value of xcfun_mode enum.

Return The XC functional evaluation mode

Parameters

• [in] mode_type: Partial derivatives (1), Potential (2), Contracted (3)

const char *xcfun_enumerate_parameters(int param)
Describe XC functional parameters.

16 Chapter 4. XCFun’s application programming interface

XCFun, Release 2.1.1

Return description of the given parameter, or NULL is param is too large.

Parameters

• [in] param: the parameter to describe. param >= 0.

const char *xcfun_enumerate_aliases(int n)
Describe XC functional aliases.

Return description of the given alias, or NULL is n is too large.

Parameters

• [in] n: the alias to describe. n >= 0.

const char *xcfun_describe_short(const char *name)
Short description of the XC functional.

Return short description of the functional.

Parameters

• [in] name:

const char *xcfun_describe_long(const char *name)
Long description of the XC functional.

Return long description of the functional.

Parameters

• [in] name:

xcfun_t *xcfun_new()
Create a new XC functional object.

Create a new functional object. The creation of this object may be rather slow; create an object once for each
calculation, not once for each grid point.

Return A xcfun_t object.

void xcfun_delete(xcfun_t *fun)
Delete a XCFun functional.

Parameters

• [inout] fun: the XCFun functional to be deleted

int xcfun_set(xcfun_t *fun, const char *name, double value)
Set a parameter in the XC functional.

Return error code (0 means normal exit)

Parameters

• [inout] fun:

• [in] name:

• [in] value:

4.2. Functions 17

XCFun, Release 2.1.1

int xcfun_get(const xcfun_t *fun, const char *name, double *value)
Get weight of given functional in the current setup.

Return 0 if name is a valid functional, -1 if not. See list_of_functionals.hpp for valid functional
names.

Parameters

• [in] fun: the functional object

• [in] name: functional name to test, aliases not supported

• [out] value: weight of functional

bool xcfun_is_gga(const xcfun_t *fun)
Is the XC functional GGA?

Return Whether fun is a GGA-type functional

Parameters

• [inout] fun:

bool xcfun_is_metagga(const xcfun_t *fun)
Is the XC functional GGA?

Return Whether fun is a metaGGA-type functional

Parameters

• [inout] fun:

int xcfun_eval_setup(xcfun_t *fun, xcfun_vars vars, xcfun_mode mode, int order)
Set up XC functional evaluation variables, mode, and order.

Return some combination of XC_E* if an error occurs, else 0

Parameters

• [inout] fun: XC functional object

• [in] vars: evaluation variables

• [in] mode: evaluation mode

• [in] order: order of the derivative requested (order=1 is the xc potential)

int xcfun_user_eval_setup(xcfun_t *fun, const int order, const unsigned int func_type, const
unsigned int dens_type, const unsigned int mode_type, const unsigned
int laplacian, const unsigned int kinetic, const unsigned int current,
const unsigned int explicit_derivatives)

Host program-friendly set up of the XC functional evaluation variables, mode, and order.

Return some combination of XC_E* if an error occurs, else 0

Parameters

• [inout] fun: XC functional object

• [in] order: order of the derivative requested (order 0 (functional), 1 (potential), 2 (hessian),)

• [in] func_type: LDA (0), GGA (1), metaGGA (2), taylor (3)

18 Chapter 4. XCFun’s application programming interface

XCFun, Release 2.1.1

• [in] dens_type: Alpha (A,0), Rho (N,1), Alpha&Beta (A_B,2), Rho&Spin (N_S,3)

• [in] mode_type: Partial derivatives (1), Potential (2), Contracted (3)

• [in] laplacian: (0 not required / 1 required)

• [in] kinetic: (0 not required / 1 required)

• [in] current: (0 not required / 1 required)

• [in] explicit_derivatives: (0 not required / 1 required)

int xcfun_input_length(const xcfun_t *fun)
Length of the density[] argument to xcfun_eval

Return some combination of XC_E* if an error occurs, else 0

Parameters

• [inout] fun: XC functional object

int xcfun_output_length(const xcfun_t *fun)
Length of the result[] argument to xcfun_eval

Return Return the number of output coefficients computed by xc_eval().

Note All derivatives up to order are calculated, not only those of the particular order.

Parameters

• [inout] fun: XC functional object

void xcfun_eval(const xcfun_t *fun, const double density[], double result[])
Evaluate the XC functional for given density at a point.

Note In contracted mode density is of dimension 2order *𝑁vars

Parameters

• [inout] fun: XC functional object

• [in] density:

• [inout] result:

void xcfun_eval_vec(const xcfun_t *fun, int nr_points, const double *density, int density_pitch, dou-
ble *result, int result_pitch)

Evaluate the XC functional for given density on a set of points.

Note In contracted mode density is of dimension 2order *𝑁vars

Parameters

• [inout] fun: XC functional object

• [in] nr_points: number of points in the evaluation set.

• [in] density:

• [in] density_pitch: density[start_of_second_point] -
density[start_of_first_point]

• [inout] result:

4.2. Functions 19

XCFun, Release 2.1.1

• [in] result_pitch: result[start_of_second_point] -
result[start_of_first_point]

4.3 Enumerations

enum xcfun_mode
Evaluation mode for functional derivatives.

Values:

enumerator XC_MODE_UNSET
Need to be zero for default initialized structs

enumerator XC_PARTIAL_DERIVATIVES
???

enumerator XC_POTENTIAL
???

enumerator XC_CONTRACTED
???

enumerator XC_NR_MODES
???

enum xcfun_vars
Types of variables to define a functional.

The XC energy density and derivatives can be evaluated using a variety of variables and variables combinations.
The variables in this enum are named as:

• XC_ prefix

• Tag for density variables.

• Tag for gradient variables.

• Tag for Laplacian variables.

• Tag for kinetic energy density variables.

• Tag for current density variables.

XCFun recognizes the following basic variables:

• A, the spin-up electron number density: 𝑛𝛼

• B, the spin-down electron number density: 𝑛𝛽

• GAA, the square magnitude of the spin-up density gradient: 𝜎𝛼𝛼 = ∇𝑛𝛼.∇𝑛𝛼
• GAB, the dot product of the spin-up and spin-down density gradients: 𝜎𝛼𝛽 = ∇𝑛𝛼.∇𝑛𝛽
• GBB, the square magnitude of the spin-down density gradient: 𝜎𝛽𝛽 = ∇𝑛𝛽 .∇𝑛𝛽
• LAPA, the Laplacian of the spin-up density: ∇2𝑛𝛼

• LAPB, the Laplacian of the spin-down density: ∇2𝑛𝛽

• TAUA, the spin-up Kohn-Sham kinetic energy density: 𝜏𝛼 = 1
2

∑︀
𝑖 |𝜓𝑖𝛼|2

• TAUB, the spin-down Kohn-Sham kinetic energy density: 𝜏𝛽 = 1
2

∑︀
𝑖 |𝜓𝑖𝛽 |2

20 Chapter 4. XCFun’s application programming interface

XCFun, Release 2.1.1

• JPAA, the spin-up current density: j𝛼𝛼

• JPBB, the spin-down current density: j𝛽𝛽

The following quantities are also recognized:

• N, the number density: 𝑛 = 𝑛𝛼 + 𝑛𝛽

• S, the spin density: 𝑠 = 𝑛𝛼 − 𝑛𝛽

• GNN, the square magnitude of the density gradient: 𝜎𝑛𝑛 = ∇𝑛.∇𝑛

• GSS, the dot product of the number and spin density gradients: 𝜎𝑛𝑠 = ∇𝑛.∇𝑠

• GNS, the square magnitude of the spin density gradient: 𝜎𝑠𝑠 = ∇𝑠.∇𝑠

• LAPN, the Laplacian of the density: ∇2𝑛

• LAPS, the Laplacian of the spin density: ∇2𝑠

• TAUN, the Kohn-Sham kinetic energy density: 𝜏𝑛

• TAUS, the spin Kohn-Sham kinetic energy density: 𝜏𝑠

XC functionals depending on the gradient of the density can furthermore be defined to use the (𝑥, 𝑦, 𝑧) compo-
nents of the gradient explicitly.

Values:

enumerator XC_VARS_UNSET
Not defined

enumerator XC_A
LDA with 𝑛𝛼

enumerator XC_N
LDA with 𝑛

enumerator XC_A_B
LDA with 𝑛𝛼 and 𝑛𝛽

enumerator XC_N_S
LDA with 𝑛 and 𝑠

enumerator XC_A_GAA
GGA with grad^2 alpha

enumerator XC_N_GNN
GGA with grad^2 rho

enumerator XC_A_B_GAA_GAB_GBB
GGA with grad^2 alpha & beta

enumerator XC_N_S_GNN_GNS_GSS
GGA with grad^2 rho and spin

enumerator XC_A_GAA_LAPA
metaGGA with grad^2 alpha laplacian

enumerator XC_A_GAA_TAUA
metaGGA with grad^2 alpha kinetic

enumerator XC_N_GNN_LAPN
metaGGA with grad^2 rho laplacian

4.3. Enumerations 21

XCFun, Release 2.1.1

enumerator XC_N_GNN_TAUN
metaGGA with grad^2 rho kinetic

enumerator XC_A_B_GAA_GAB_GBB_LAPA_LAPB
metaGGA with grad^2 alpha & beta laplacian

enumerator XC_A_B_GAA_GAB_GBB_TAUA_TAUB
metaGGA with grad^2 alpha & beta kinetic

enumerator XC_N_S_GNN_GNS_GSS_LAPN_LAPS
metaGGA with grad^2 rho and spin laplacian

enumerator XC_N_S_GNN_GNS_GSS_TAUN_TAUS
metaGGA with grad^2 rho and spin kinetic

enumerator XC_A_B_GAA_GAB_GBB_LAPA_LAPB_TAUA_TAUB
metaGGA with grad^2 alpha & beta laplacian kinetic

enumerator XC_A_B_GAA_GAB_GBB_LAPA_LAPB_TAUA_TAUB_JPAA_JPBB
metaGGA with grad^2 alpha & beta laplacian kinetic current

enumerator XC_N_S_GNN_GNS_GSS_LAPN_LAPS_TAUN_TAUS
metaGGA with grad^2 rho and spin laplacian kinetic

enumerator XC_A_AX_AY_AZ
GGA with gradient components alpha

enumerator XC_A_B_AX_AY_AZ_BX_BY_BZ
GGA with gradient components alpha & beta

enumerator XC_N_NX_NY_NZ
GGA with gradient components rho

enumerator XC_N_S_NX_NY_NZ_SX_SY_SZ
GGA with gradient components rho and spin

enumerator XC_A_AX_AY_AZ_TAUA
metaGGA with gradient components alpha

enumerator XC_A_B_AX_AY_AZ_BX_BY_BZ_TAUA_TAUB
metaGGA with gradient components alpha & beta

enumerator XC_N_NX_NY_NZ_TAUN
metaGGA with gradient components rho

enumerator XC_N_S_NX_NY_NZ_SX_SY_SZ_TAUN_TAUS
metaGGA with gradient components rho and spin

enumerator XC_A_2ND_TAYLOR
2nd order Taylor coefficients of alpha density, 1+3+6=10 numbers, rev gradlex order

enumerator XC_A_B_2ND_TAYLOR
2nd order Taylor expansion of alpha and beta densities (first alpha, then beta) 20 numbers

enumerator XC_N_2ND_TAYLOR
2nd order Taylor rho

enumerator XC_N_S_2ND_TAYLOR
2nd order Taylor rho and spin

enumerator XC_NR_VARS
Number of variables

22 Chapter 4. XCFun’s application programming interface

XCFun, Release 2.1.1

4.4 Preprocessor definitions and global variables

XCFUN_API_VERSION
Version of the XCFun API

XCFUN_MAX_ORDER
Maximum differentiation order for XC kernels

constexpr auto xcfun::XCFUN_TINY_DENSITY = 1e-14
Used for regularizing input

constexpr auto xcfun::XC_EORDER = 1
Invalid order for given mode and vars

constexpr auto xcfun::XC_EVARS = 2
Invalid vars for functional type (ie. lda vars for gga)

constexpr auto xcfun::XC_EMODE = 4
Invalid mode for functional type (ie. potential for mgga)

4.4. Preprocessor definitions and global variables 23

XCFun, Release 2.1.1

24 Chapter 4. XCFun’s application programming interface

CHAPTER

FIVE

EXCHANGE-CORRELATION FUNCTIONALS

The following functionals are implemented within XCFun

SLATERX Slater LDA exchange
PW86X PW86 exchange
VWN5C VWN5 LDA Correlation functional
PBEC PBE correlation functional
PBEX PBE Exchange Functional
BECKEX Becke 88 exchange
BECKECORRX Becke 88 exchange correction
BECKESRX Short range Becke 88 exchange
LDAERFX Short-range spin-dependent LDA exchange functional
LDAERFC Short-range spin-dependent LDA correlation functional
LDAERFC_JT Short-range spin-unpolarized LDA correlation functional
LYPC LYP correlation
OPTX OPTX Handy & Cohen exchange
REVPBEX Revised PBE Exchange Functional
RPBEX RPBE Exchange Functional
SPBEC sPBE correlation functional
VWN_PBEC PBE correlation functional using VWN LDA correlation.
KTX KT exchange GGA correction
TFK Thomas-Fermi Kinetic Energy Functional
PW91X Perdew-Wang 1991 GGA Exchange Functional
PW91K PW91 GGA Kinetic Energy Functional
PW92C PW92 LDA correlation
M05X M05 exchange
M05X2X M05-2X exchange
M06X M06 exchange
M06X2X M06-2X exchange
M06LX M06-L exchange
M06HFX M06-HF exchange
M05X2C M05-2X Correlation
M05C M05 Correlation
M06C M06 Correlation
M06LC M06-L Correlation
M06X2C M06-2X Correlation
TPSSC TPSS original correlation functional
TPSSX TPSS original exchange functional
REVTPSSC Revised TPSS correlation functional

continues on next page

25

XCFun, Release 2.1.1

Table 1 – continued from previous page
REVTPSSX Reviewed TPSS exchange functional
PZ81C PZ81 LDA correlation
P86C P86C GGA correlation
RANGESEP_MU Range separation inverse length [1/a0]
EXX Amount of exact (HF like) exchange (must be provided externally)

5.1 Implementing a new XC functional

Warning: To be written

5.2 Introducing new variables

Warning: To be written

26 Chapter 5. Exchange-correlation functionals

CHAPTER

SIX

CHANGE LOG

6.1 Version 2.1.1 - 2020-11-12

6.1.1 Changed

• Linux and macOS continuous integration testing is run on GitHub actions. See PR #145

6.1.2 Fixed

• We polished the installation of header files, CMake target export files, and Python module. These are especially
relevant for Conda packaging XCFun. See PR #143

• A numerical issue with SCAN functionals and small density gradients was fixed by James Furness (@JFur-
ness1). See issue #144 reported by Xing Zhang (@fishjojo) and subsequent PR #146 for the fix.

6.2 Version 2.1.0 - 2020-09-18

• Many new functionals in the SCAN family have been added. Thanks to James Furness for the contribution. See
PR #140

• The library is now available both as a Spack and a Conda package.

• The library can now be natively compiled on Linux, macOS, and Windows.

6.2.1 Changed

• BREAKING CMake >= 3.14 is required to configure the code.

6.3 Version 2.0.2 - 2020-07-15

6.3.1 Fixed

• VWN3 functional has been fixed for the spin-polarized case. It previously gave wrong results when alpha and
beta densities differed. Thanks to Zhenyu Zhu for reporting the problem and also suggesting the solution. See
PR #134 and issue #132.

27

https://github.com/dftlibs/xcfun/pull/145
https://github.com/dftlibs/xcfun/pull/143
https://github.com/dftlibs/xcfun/issues/144
https://github.com/dftlibs/xcfun/pull/146
https://github.com/dftlibs/xcfun/pull/140
https://github.com/dftlibs/xcfun/pull/134
https://github.com/dftlibs/xcfun/issues/132

XCFun, Release 2.1.1

6.4 Version 2.0.1 - 2020-05-06

6.4.1 Fixed

• We removed the DEBUG_POSTFIX property from the properties on the xcfun target. This was leading to
build failures when using the library through CMake FetchContent with mixed release/debug mode.

6.5 Version 2.0.0 - 2020-04-14

6.5.1 Changed

• BREAKING The build system will only produce a shared (default) or static library. Compilation of the static
library can be requested by setting BUILD_SHARED_LIBS to OFF.

• macOS CI testing was moved to Azure Pipelines.

• The dependency on pybind11 was bumped to v2.5.0

6.5.2 Fixed

• We corrected a number of wrinkles in the handling of symbol visibility in the shared library.

6.6 Version 2.0.0a7 - 2020-04-10

6.6.1 Fixed

• Address warnings from compilers. Fix #90.

6.7 Version 2.0.0a6 - 2020-02-23

6.7.1 Fixed

• Compilation with GCC 5.4.0.

6.8 Version 2.0.0a5 - 2020-02-20

6.8.1 Fixed

• Handling of 64-bit integers in the Fortran interface.

28 Chapter 6. Change Log

XCFun, Release 2.1.1

6.9 Version 2.0.0a4 - 2020-02-02

6.9.1 Fixed

• The API function xcfun_get accepts a single in-out double parameter. It was erroneously declared to
accept an array of double-s instead.

6.10 Version 2.0.0a3 - 2020-01-31

We have introduced a number of breaking changes, motivated by the need to modernize the library. See the migration
guide.

6.10.1 Added

• Up-to-date API documentation generated with Doxygen, breathe, and Sphinx.

• Up-to-date documentation on how to build and develop XCFun.

• Up-to-date documentation on how to use XCFun in your code.

• API functions xcfun_which_vars and xcfun_which_mode.

• A full example, based on CMake as build system generator, showing how to use the library from a C++ host.
Thanks @stigrj!

• A full example, based on CMake as build system generator, showing how to use the library from a C host.

• A full example, based on CMake as build system generator, showing how to use the library from a Fortran host.

6.10.2 Changed

• BREAKING All API functions are uniformly namespaced with the xcfun_ prefix.

• BREAKING The Fortran interface has been completely rewritten using iso_c_binding: the library can
now be compiled without the use of neither a C nor a Fortran compiler. :confetti_ball:

• BREAKING CMake option XCFun_XC_MAX_ORDER renamed to XCFUN_MAX_ORDER. New default value
of 6.

• BREAKING CMake option XCFun_ENABLE_PYTHON_INTERFACE renamed to
XCFUN_PYTHON_INTERFACE.

6.10.3 Deprecated

6.10.4 Removed

• BREAKING API functions xc_serialize, xc_deserialize, xc_set_fromstring, and
xc_derivative_index.

• BREAKING The CMake options ENABLE_FC_SUPPORT and ENABLE_64BIT_INTEGERS.

6.9. Version 2.0.0a4 - 2020-02-02 29

https://xcfun.readthedocs.io/en/latest/migration.html
https://xcfun.readthedocs.io/en/latest/migration.html
http://doxygen.nl/
https://breathe.readthedocs.io/en/latest/
https://www.sphinx-doc.org/en/master/

XCFun, Release 2.1.1

6.10.5 Fixed

6.10.6 Security

6.11 Version 2.0.0a2 - 2020-01-21

6.12 Version 2.0.0a1 - 2019-12-15

6.12.1 Added

• A user-friendly API function to set up functional evaluation xc_user_eval_setup. Thanks @ilfreddy.

6.12.2 Changed

• BREAKING A compiler compliant with the C++11 (or later) standard is required.

• BREAKING CMake >= 3.11 is required to configure the code.

• BREAKING The Python bindings are now generated using pybind11 instead of SWIG. The dependency will
be fetched at configuration time if not found on your system.

• BREAKING The Fortran interface is no longer build with the code, but shipped as a separate file to be compiled
within your own Fortran code.

30 Chapter 6. Change Log

https://pybind11.readthedocs.io

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

31

XCFun, Release 2.1.1

32 Chapter 7. Indices and tables

INDEX

X
xcfun::XC_EMODE (C++ member), 23
xcfun::XC_EORDER (C++ member), 23
xcfun::XC_EVARS (C++ member), 23
xcfun::XCFUN_TINY_DENSITY (C++ member), 23
XCFUN_API_VERSION (C macro), 23
xcfun_authors (C++ function), 15
xcfun_delete (C++ function), 17
xcfun_describe_long (C++ function), 17
xcfun_describe_short (C++ function), 17
xcfun_enumerate_aliases (C++ function), 17
xcfun_enumerate_parameters (C++ function),

16
xcfun_eval (C++ function), 19
xcfun_eval_setup (C++ function), 18
xcfun_eval_vec (C++ function), 19
xcfun_get (C++ function), 17
xcfun_input_length (C++ function), 19
xcfun_is_compatible_library (C++ function),

15
xcfun_is_gga (C++ function), 18
xcfun_is_metagga (C++ function), 18
XCFUN_MAX_ORDER (C macro), 23
xcfun_mode (C++ enum), 20
xcfun_mode::XC_CONTRACTED (C++ enumerator),

20
xcfun_mode::XC_MODE_UNSET (C++ enumerator),

20
xcfun_mode::XC_NR_MODES (C++ enumerator),

20
xcfun_mode::XC_PARTIAL_DERIVATIVES (C++

enumerator), 20
xcfun_mode::XC_POTENTIAL (C++ enumerator),

20
xcfun_new (C++ function), 17
xcfun_output_length (C++ function), 19
xcfun_set (C++ function), 17
xcfun_splash (C++ function), 15
xcfun_t (C++ type), 15
xcfun_test (C++ function), 15
xcfun_user_eval_setup (C++ function), 18
xcfun_vars (C++ enum), 20

xcfun_vars::XC_A (C++ enumerator), 21
xcfun_vars::XC_A_2ND_TAYLOR (C++ enumera-

tor), 22
xcfun_vars::XC_A_AX_AY_AZ (C++ enumerator),

22
xcfun_vars::XC_A_AX_AY_AZ_TAUA (C++ enu-

merator), 22
xcfun_vars::XC_A_B (C++ enumerator), 21
xcfun_vars::XC_A_B_2ND_TAYLOR (C++ enu-

merator), 22
xcfun_vars::XC_A_B_AX_AY_AZ_BX_BY_BZ

(C++ enumerator), 22
xcfun_vars::XC_A_B_AX_AY_AZ_BX_BY_BZ_TAUA_TAUB

(C++ enumerator), 22
xcfun_vars::XC_A_B_GAA_GAB_GBB (C++ enu-

merator), 21
xcfun_vars::XC_A_B_GAA_GAB_GBB_LAPA_LAPB

(C++ enumerator), 22
xcfun_vars::XC_A_B_GAA_GAB_GBB_LAPA_LAPB_TAUA_TAUB

(C++ enumerator), 22
xcfun_vars::XC_A_B_GAA_GAB_GBB_LAPA_LAPB_TAUA_TAUB_JPAA_JPBB

(C++ enumerator), 22
xcfun_vars::XC_A_B_GAA_GAB_GBB_TAUA_TAUB

(C++ enumerator), 22
xcfun_vars::XC_A_GAA (C++ enumerator), 21
xcfun_vars::XC_A_GAA_LAPA (C++ enumerator),

21
xcfun_vars::XC_A_GAA_TAUA (C++ enumerator),

21
xcfun_vars::XC_N (C++ enumerator), 21
xcfun_vars::XC_N_2ND_TAYLOR (C++ enumera-

tor), 22
xcfun_vars::XC_N_GNN (C++ enumerator), 21
xcfun_vars::XC_N_GNN_LAPN (C++ enumerator),

21
xcfun_vars::XC_N_GNN_TAUN (C++ enumerator),

21
xcfun_vars::XC_N_NX_NY_NZ (C++ enumerator),

22
xcfun_vars::XC_N_NX_NY_NZ_TAUN (C++ enu-

merator), 22
xcfun_vars::XC_N_S (C++ enumerator), 21

33

XCFun, Release 2.1.1

xcfun_vars::XC_N_S_2ND_TAYLOR (C++ enu-
merator), 22

xcfun_vars::XC_N_S_GNN_GNS_GSS (C++ enu-
merator), 21

xcfun_vars::XC_N_S_GNN_GNS_GSS_LAPN_LAPS
(C++ enumerator), 22

xcfun_vars::XC_N_S_GNN_GNS_GSS_LAPN_LAPS_TAUN_TAUS
(C++ enumerator), 22

xcfun_vars::XC_N_S_GNN_GNS_GSS_TAUN_TAUS
(C++ enumerator), 22

xcfun_vars::XC_N_S_NX_NY_NZ_SX_SY_SZ
(C++ enumerator), 22

xcfun_vars::XC_N_S_NX_NY_NZ_SX_SY_SZ_TAUN_TAUS
(C++ enumerator), 22

xcfun_vars::XC_NR_VARS (C++ enumerator), 22
xcfun_vars::XC_VARS_UNSET (C++ enumerator),

21
xcfun_version (C++ function), 15
xcfun_which_mode (C++ function), 16
xcfun_which_vars (C++ function), 16
XCFunctional (C++ struct), 15

34 Index

	Building XCFun
	Dependencies
	Configuring, building, testing
	Compilation options
	Building the documentation
	Bumping versions

	Using XCFun
	Installing using Spack
	Installing using Conda
	Integration with your build system
	Writing an interface

	Migrating to the new application programmers’ interface
	C/C++ host programs
	Fortran host programs

	XCFun’s application programming interface
	Types and type definitions
	Functions
	Enumerations
	Preprocessor definitions and global variables

	Exchange-correlation functionals
	Implementing a new XC functional
	Introducing new variables

	Change Log
	Version 2.1.1 - 2020-11-12
	Version 2.1.0 - 2020-09-18
	Version 2.0.2 - 2020-07-15
	Version 2.0.1 - 2020-05-06
	Version 2.0.0 - 2020-04-14
	Version 2.0.0a7 - 2020-04-10
	Version 2.0.0a6 - 2020-02-23
	Version 2.0.0a5 - 2020-02-20
	Version 2.0.0a4 - 2020-02-02
	Version 2.0.0a3 - 2020-01-31
	Version 2.0.0a2 - 2020-01-21
	Version 2.0.0a1 - 2019-12-15

	Indices and tables
	Index

